Textural Analysis to Aid Automated Classification of Lunar Craters

Martin Vickers mjv08@aber.ac.uk

Solar System Physics Group Institute of Maths and Physics Aberystwyth University

Contents

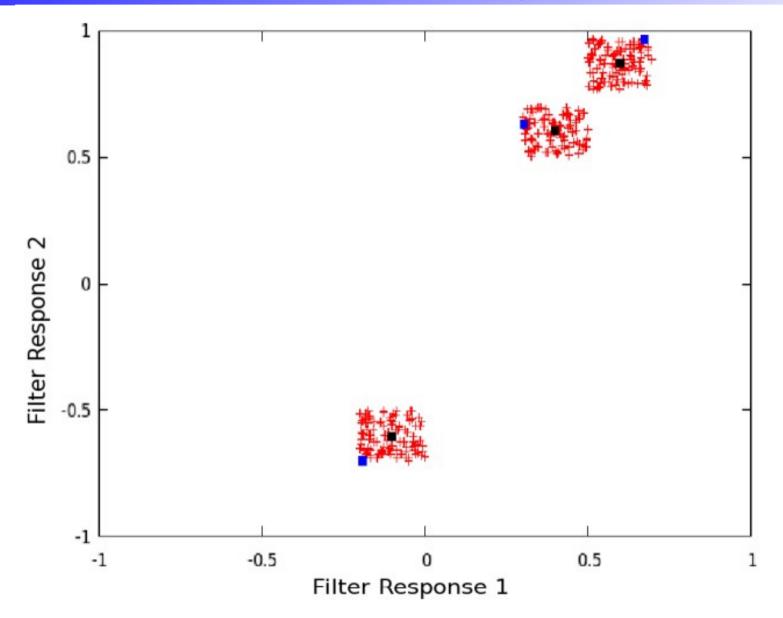
- Introduction
- Methodology
- CUReT Database Results
- Lunar Terminator Visualization Tool (LTVT) experiment & discussion
- Taxonomy Creation
- Summary

Introduction

- "To automatically segment, classify and analyse craters on the Moon"
- Part of a larger project, this talk focusing on textural classification, which include:
 - Segmentation
 - Classification
 - Taxonomy construction
 - GIS integration

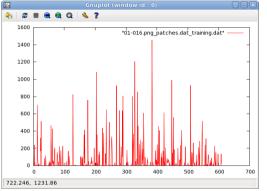
- Varma & Zisserman (2003) technique, achieved a classification rate of ~98%
- Each sample has various images of the sample at differing view/illumination angles
- Patches are created (e.g. 3x3, 5x5, 7x7 etc..)
- Randomly select images from each sample to create a model

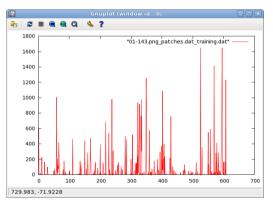
 Varma, M. and Zisserman, A. Texture Classification: Are Filter Banks Necessary? Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2003)

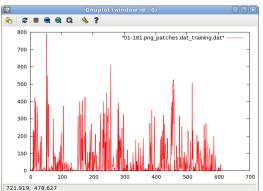

_							
	181	180	166	135	128	150	164
	213	214	187	141	162	195	188
	190	238	229	203	149	152	194
	122	162	199	195	166	128	135
	121	122	168	166	170	171	150
	132	148	168	193	215	209	188
	148	137	164	174	159	164	164

rudiga@lantern:/home/rudiga/curetgreyMRF_7/sample01

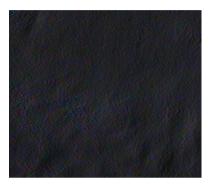
File Edit View Terminal Help

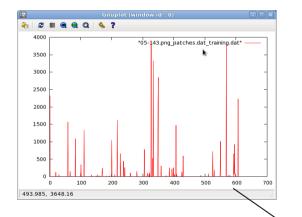

136.0 155.0 194.0 192.0 175.0 135.0 129.0 155.0 171.0 170.0 149.0 170.0 214.0 204.0 176.0 172.0 0 157.0 180.0 183.0 156.0 191.0 149.0 143.0 157.0 169.0 179.0 173.0 151.0 164.0 169.0 173.0 165.0 6.0 162.0 147.0 165.0 171.0 170.0 156.0 150.0 150.0 177.0 160.0 156.0 158.0 143.0 150.0 169.0 155.0 194.0 192.0 175.0 135.0 129.0 186.0 171.0 170.0 149.0 170.0 214.0 204.0 194.0 172.0 163.0 0 180.0 183.0 156.0 146.0 149.0 143.0 157.0 169.0 179.0 173.0 162.0 164.0 169.0 173.0 165.0 146.0 2.0 183.0 165.0 171.0 170.0 156.0 150.0 150.0 158.0 160.0 156.0 158.0 143.0 150.0 169.0 170.0 194.0 192.0 175.0 135.0 129.0 186.0 217.0 170.0 149.0 170.0 214.0 204.0 194.0 137.0 163.0 157.0 0 183.0 156.0 146.0 163.0 143.0 157.0 169.0 179.0 173.0 162.0 150.0 169.0 173.0 165.0 146.0 162.0 3.0 183.0 171.0 170.0 156.0 150.0 150.0 158.0 162.0 156.0 158.0 143.0 150.0 169.0 170.0 164.0 192.0 175.0 135.0 129.0 186.0 217.0 206.0 149.0 170.0 214.0 204.0 194.0 137.0 138.0 157.0 180.0 0 156.0 146.0 163.0 180.0 157.0 169.0 179.0 173.0 162.0 150.0 164.0 173.0 165.0 146.0 162.0 183.0 3.0 175.0 170.0 156.0 150.0 150.0 158.0 162.0 162.0 158.0 143.0 150.0 169.0 170.0 164.0 149.0 175.0 135.0 129.0 186.0 217.0 206.0 178.0 170.0 214.0 204.0 194.0 137.0 138.0 172.0 180.0 183.0 1 0 146.0 163.0 180.0 193.0 169.0 179.0 173.0 162.0 150.0 164.0 183.0 165.0 146.0 162.0 183.0 183.0 5.0 150.0 156.0 150.0 150.0 158.0 162.0 162.0 159.0 143.0 150.0 169.0 170.0 164.0 149.0 147.0 135.0 129.0 186.0 217.0 206.0 178.0 128.0 214.0 204.0 194.0 137.0 138.0 172.0 172.0 183.0 156.0 0 163.0 180.0 193.0 156.0 179.0 173.0 162.0 150.0 164.0 183.0 177.0 146.0 162.0 183.0 183.0 175.0 0.0 155.0 150.0 150.0 158.0 162.0 162.0 159.0 150.0 150.0 169.0 170.0 164.0 149.0 147.0 165.0 129 0 186 0 217 0 206 0 178 0 128 0 144 0 204 0 194 0 137 0 138 0 172 0 172 0 165 0 156 0 146 0 1


- Cluster images using K-means to create k number of "Textons"
 - Improvement gain using K-Means++ (Arthur, D., 2007)
- Aggregate the images to create a model
 - e.g. if 10 images are selected from 50 samples, each clustered using k=10. We would have a model containing 500 "Textons"
 - Arthur, D. and Vassilvitskii, S. (2007). "K-means++: the advantages of careful seeding". Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. pp. 1027--1035

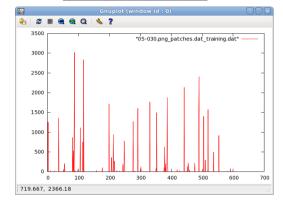


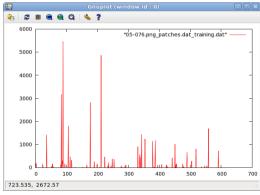
- Create training set
 - Randomly select image
 - Compare each patch to model and align with closest "Texton". This creates a histogram.
- Run the experiment
 - Randomly select novel image
 - Create patches
 - Create histogram using model
 - Compare novel histogram against each training histogram using χ^2

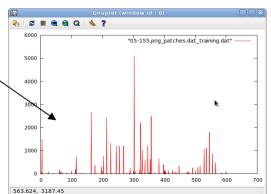




Novel Image (Leather)

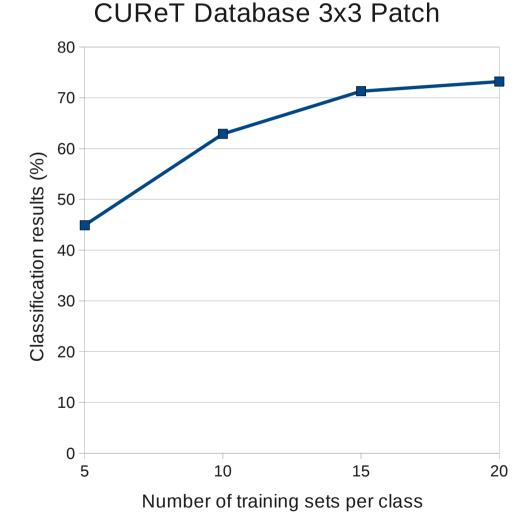




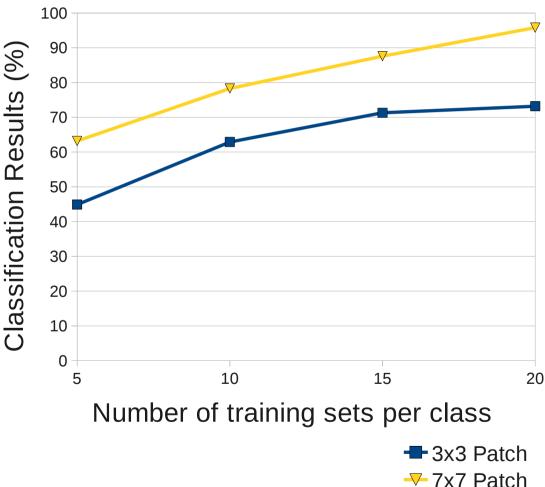

 χ^2

Leather

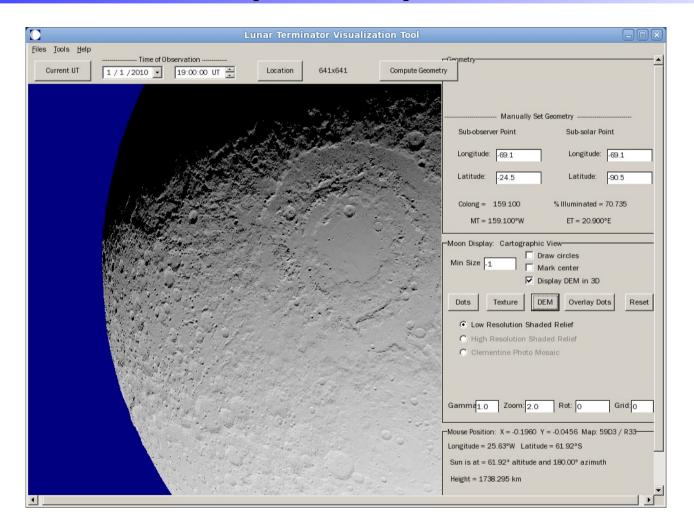
Columbia-Utrecht Reflectance and Texture Database (CUReT)


- 61 different samples
- 205 images per sample

- 94 images from each sample with large enough viewable area
- 5734 total images

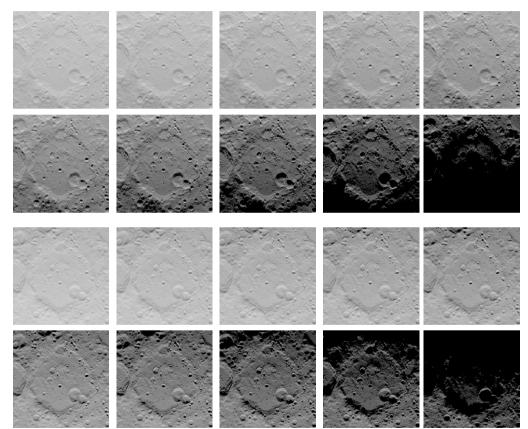

Textural Analysis: Number of training sets

- 3x3 patch size
- 10 images per sample for model
- K=10
- 5, 10, 15 and 20 training models
- Run 3 times, 1000 randomly images
- 73.2% classification with 20 training sets



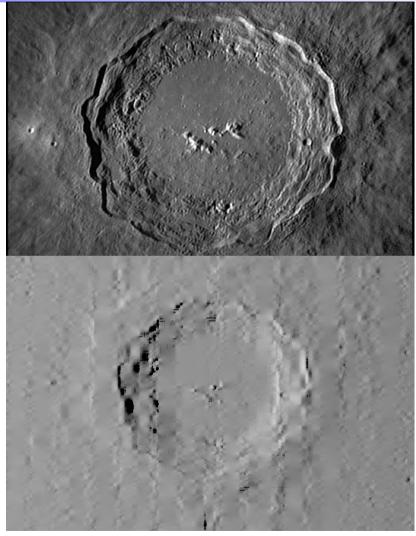
Textural Analysis: Effect of Patch Size

- 95.8% classification rate using 7x7 patch and 20 training sets per sample
- VZ (2003) attain ~98% when using 46 training sets per sample (half of the 92 images for each sample)


Lunar Terminator Visualisation Tool (LTVT)

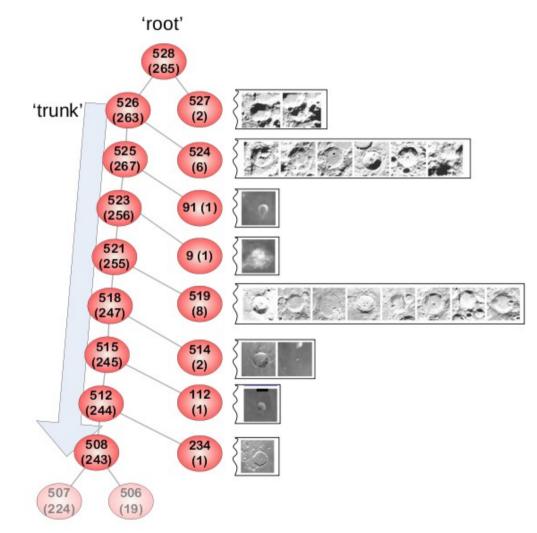
http://ltvt.wikispaces.com/

Lunar Terminator Visualization Tool Experiment


- 30 largest craters chosen
- 1 view angle, directly above
- 20 illumination angles
 - 0° Azimuth and 180°
 - 0° 45° elevation in 5° intervals
- 71.2% classification using 7x7 patch & 10 training sets

Bailly Crater (-66.5lat, -69.1long): (Top) 0° Azimuth, 0° - 45° elevation in 5° intervals. (Bottom) 180° Azimuth, 0° - 45° elevation in 5° intervals.

Lunar Terminator Visualization Tool Discussion


- Lower classification results compared to CUReT experiment
- Small set of craters
- Limited phase angles
- Created using only LOLA64 DEM and a lunar-lambertian reflectance model

Copernicus crater. Top: http://www.damianpeach.com/lunar.htm Bottom: Created using LTVT LOLA64

Taxonomy Creation

- Cluster the similarity of craters rather than using a training set
- Using Earth Movers Distance rather than χ² for similarity
- Provides a useful way to navigate large amounts of image data

Summary

- Achieved a 95.8% classification of the CUReT database using only 20 training sets
- Currently processing a more comprehensive set of results of the algorithm
- 71.2% LTVT classification using a simple experiment
- Expand LTVT experiment, more craters and multiple phase angles
- Classify LROC images as more phase angles are available

Thank you

Questions?